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TAYLOR-GORTLER INSTABILITY IN A SUPERSONIC JET 

N. A. Zheltukhin and N. M. Terekhova UDC 532.526+533 

This paper is devoted to the numerical modeling of the characteristics and structure 
of a new (for supersonic jets) class of disturbances and some applications of the results to 
the interpretation of the experimental data Presented in [1-3]. The object of this paper is 
to obtain basic data and to verify the model of the existence of the Taylor-G6rtler in- 
stability in a free supersonic flow. The literature available to us does not contain any 
information about such investigations. This work is a detailed exposition of the results 
presented briefly in [3, 4]. 

We consider first the hypothesis that the flow contains stationary rotational distur- 
bances of the type Taylor-G6rtler waves (T-G), excited by additional centrifugal forces 
arising due to the curvature of the trajectories of the gas following the real cellular "bar- 
rel-shape" structure of a nonisobaric jet. This choice, from among existing alternative 
choices, one of which is described in [5], is dictated by the following circumstances. First, 
longitudinal bands, indicating the existence of azimuthal nonuniformities of the optical 
density, are recorded near the nozzle cutoff, where the trajectories of the gas are actually 
curvilinear. Second, under the experimental conditions (underexpanded jet with degree of 
underexpansion N ~ 5) a wide-band spectrum of noise is recorded; this precludes the ap- 
pearance of strong nonlinear effects at such early stages, and the other nonlinearities will 
be second-order infinitesimals compared to the linear T-G waves. The weak effect of sharp 
gradients at the nozzle cutoff flow discontinuities is indicated by the fact that the in- 
tensity of the bands decreases with increaing surface smoothness under constant efflux con- 
ditions. 

So, the hypothesis that stationary rotational disturbances exist in the initial sec- 
tion of the jet is most plausible. Within the framework of this hypothesis we performed 
numerical modeling of the characteristics of the waves, studied the dependences on the flow 
parameters, and analyzed the experimental data in order to retrieve the local values of the 
density and velocity of the flow. 

i. Equations for the Disturbances. The flow scheme within the first cell ("barrel") 
of the jet is displayed in Fig. i. A system of linearized equations for T-G-wave-type dis- 
turbances, which includes a number of assumptions to be discussed below, was constructed in 
[5]: 

U~ - [2Uu'/Ro] + P//Po = O, U~ '  + P$/~o = O, 

Uu~ + U,v' + [Uv' / R o ] +  p~/po=O, U ( p ' / a 2 - p ' ) ~ - p t ~ ' = O ,  (1.1) 
U~ + po,v' + po (v/+ w~/r  + u~ + v ' / r  + [ v ' / go l )  = O. 

This system was constructed for a one-dimensional flow of a compressible, nonviscous, heat- 
nonconducting gas with the velocity field u = IEv', ew', U + su' I, where v' w' u' , , are, 
respectively, the transverse, azimuthal, and longitudinal, components of the disturbances in 
the coordinates r, ~, and x; p' and p' are the disturbances of the density and pressure, 
respectively; U = U(r) is the longitudinal component of the average velocity; P0 is the 
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average flow density; and, a is the local sound speed. The equations were represented in 
dimensionless form by scaling the variables to the following characteristic qu!nti~ies: r 0 is 
the radial coordinate where the velocity is half its maximum value (U = 0.5); U0, P0 are, 
respectively, the maximum velocity and the density in the initial mixing layer. 

The additional forces, which are proportional to I/R 0 (R 0 is the radius of curvature 
of the trajectories of the gas), are enclosed in brackets. The value of R 0 determines the 
centrifugal effects and the associated T-G waves. The system (i.i) is valid as a local 
approximation under the condition R 0 = const. As one can see from Fig. i, R 0 changes in 
magnitude due to the growth of the boundary layer and the corresponding arrangement of the 
streamlines within the first "barrel." Determining the value of R 0 is itself a problem, 
which did not arise for flows near walls. The first and natural variant is to determine R 0 
from sharp visible or measured reference points, such as the position of the suspended shock 
(SS) or the line of maximum total pressure P0 in the compressed layer. This is apparently 
not entirely correct. Gas from the surrounding flooded space plays in the jet the role of a 
solid wall, on which all disturbances stop, and although the oscillations are mainly concen- 
trated in the mixing layer, they can penetrate quite far into this space, thereby perturbing 
it. The values of R 0 calculated along the lines of asymptotic decay of disturbances differ 
significantly from the values of R 0 obtained from the exact reference points, and since the 
concept of radius of curvature is basic for analytical descriptions of T-G waves, an at- 
tempt must be made to find reasonable agreement between these values. 

2. Average Flow. We study the problem in the plane-parallel approximation. It is 
acknowledged that in order to describe T-G waves in subsonic flows near walls the transverse 
component of the average velocity V must be included in the calculations [6]; doing so en- 
sures that diffusion and viscous effects are taken into account correctly. For a noniso- 
baric supersonic jet this component must be neglected at this stage due to the fact that there 
are no reliable data on the form and magnitude of V on the initial section of the jet [7]. 
The profile of the longitudinal component U is taken, just as in [5], from experimental ap- 
proximations [8]. Doing so, of course, introduces into the results errors that cannot yet 
be estimated. 

The compressed layer itself (r l-r 3 in Fig. i) consists of two subregions [9]. In the 
first subregion, from the suspended shock r~, the total pressure is restored up to its maxi- 
mum value on the line r 2 . This value is used as the start of the mixing layer (its inner 
boundary). Next, P0 and therefore the average velocity U decrease to their values in the 
flooded space (P0 ~ Pout, U z 0). The coordinate r 3 is the conventional exterior boundary 
of the mixing layer, whose thickness 6 = r 3 - r 2 . The half-velocity point virtually coin- 
cides with the half-width 6 of the layer, so that r 2 = 1 - 6/2 and r 3 ~ i + 6/2, and U(r 3) N 
0.06. Thus 

1 r < ~, 
U ( O =  e x p ( ~ 0 . 6 9 3 ~  2) r ~ ,  

where the self-similar coordinate N = 2(r - r2)/6. The relation between the average density 
90 and U was determined from the gas-dynamic relation P0= [I+ M~(I - U2)(x- 1)/2] -I, where x= 

Cp/C v (M 0 is the Mach number with U = U0). A modification of Sutherland's formula [8] can 
also be employed; this is virtually equivalent. The sound speed a = (p0M~)-i/2 

In this work the structure of the acceleration section ~ ~ r ~ ~ was neglected, since it 
was assumed that in regions with positive velocities gradients dU2/dr > 0, in accordance with 
the results of [6], the flow is more stable against T-G perturbations than in regions with 
dU2/dr = 0. 

3. Form and Eigenvalues of T-G Waves. The solutions of the system (i.I) can be ob- 
tained by two methods. In the first method, the linearized equations are directly integrated 
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numerically. This method is still more problematic than the second method, in which the 
waves are represented, as done traditionally, in the form of a harmonic signal 

v', w', u', p', p' (r, ~,  x) = G {(v, u, p ,  p)(O cos n~; w (0  sin n~} e ~.  ( 3 .  i )  

Here v, w, u, p, and p are the amplitude functions of the waves; n is the wave number, char- 
acterizing the periodicity and number of vortices in the azimuthal direction, the mode of 
the wave; ~ is the longitudinal gain factor (~ > 0 is the growth rate); G is the amplitude 
parameter, the weighting function. Equations (i.i) for the waves (3.1) assume the form 

~Uu - 2Uu/Ro + ~ /Po  = O, ~Uw - n p / ~ o  = O, 

~Uu + (U, + U/Ro) v + ~P/Po = O, aU (p /a  2 - p) - p~v = 0, ( 3 . 2 )  

aUp + Po [~ + n w / r  + ~u + (1 / r  + 1~Re + P~/Po) v] = 0. 

Outside the mixing layer v, w, u, p, p § 0. 

The system reduces to a second-order ordinary differential equation for p: 

Pr, + ( 1 / r -  2 ~ / F -  p0r/P0 ) ~ + (a  2 -- n 2 / /  -- I s / a  2) p = [(F (BBO~ - 2F, B B O / F C  - 2 /Re]  ~ - 

- [2 ( 1 / r  + ~ / F -  p0r/P0 -- C, /C + 1 /Ro) /Ro . -  BBI ( ~ / a  2 + n 2 / ~ ) / ~ ]  p, 
(3.3) 

F = ~U, B = 2U/Ro, B~ = U' + B / 2 ,  C = I S + BBf. 

The left-hand side represents the ordinary equation for disturbances without centrifugal 
forces; the right-hand side contains correction terms, proportional to I/R 0. In order to 
avoid singularities, arising in the solutions in regions where U + 0, nonstationary and 
spatial dependences are formally introduced into the equations, so that the solutions are 
actually constructed not for zero but rather quite low frequencies. Thus the acoustic 
Strouhal number, constructed according to the sound speed outside the jet, Sh = 2vmr0/a, 
was assumed to be 0.005 and 0.0025, corresponding to waves with period T t > 250. The period 
of the spatial variations is T X > i00. On the measurement section such waves can be re- 
garded as stationary. 

The boundary conditions for p, corresponding to solutions decaying outside the 6 layer, 
were constructed using modified Bessel functions I n and K n of order n in regions where U = 
const [5]; it was assumed in so doing that the boundary conditions do not contain centri- 
fugal effects: 

r < & : p - - g ,  D - L , ,  (U = 1), 

r > ~: p - K,,, p, - K,, (U - 10- ' ) .  ( 3 . 4 )  

T h u s  E q s .  ( 3 . 3 )  a n d  ( 3 . 4 )  e n a b l e  f o r m u l a t i n g  t h e  b o u n d a r y - v a l u e  p r o b l e m  f o r  d e t e r m i n i n g  t h e  
eigenvalues ~ and n of T-G waves with prescribed values of E 0, M 0, and 6, and the system 
(3.2) enables finding the amplitude functions of these waves. 

As noted in [5], numerical calculations have established that Eq. (3.3) gives several 
families of solutions satisfying the conditions (3.4). Additional modes (irregular, accord- 
ing to the terminology of [I0]) appear. The behavior of five such branches of solutions was 
traced. Among them, there is a branch A on which the values of ~ depend on the character- 
istics of the flow (changes in 6 and M 0) and the scale of the wave motion (values of n). The 
eigenvalues ~ for the families B, C, D, and E are completely conservative with respect to 
these parameters and are determined only by the curvature I/R 0. Figure 2 illustrates this 
thesis. Here the functions ~(n) are presented for the branch A (solid lines) with R 0 = 25, 
I0, 8.5, and 5.5 (lines i-4) with fixed flow parameters M 0 = 1.5 and 6 = 0.15. It was found 
that excitations of higher-order modes (small-scale waves) should grow more intensely. This 
behavior is opposite to that of traveling disturbances, where it is large-scale oscillations 
that are more unstable. Increasing the curvature I/R 0, which results in stronger centrifugal 
effects, intensifies the instability of the wave process. 

The solutions for the branches B, C, D, and E, written in order of increasing ~, are 
given for R 0 = 5.5 (dashed lines) and 25 (dot-dash lines). It is evident that, on the whole, 
the growth rates for these branches exceed the values given by the family A, but there exist 
ranges of values of n where they are comparable. Under such conditions the problem of iden- 
tifying waves according to whether or not they belong to a particular family becomes an im- 
portant problem in the analysis of experimental data. In this connection there arises the 
problem of determining the value of R 0. This problem is exacerbated by the fact that the 
boundary of the layer is poorly recorded by experimental methods based on measurements per~ 
formed with Pitot tubes in subsonic regions. 
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Completing this section on the dependences of the wave characteristics on the flow para- 
meters, we point out that for the branch A the values of ~ decrease slightly as the thickness 
of the layer increases. As an example, we give the variant n = 20, R 0 = 5.5, and M 0 = 1.5. 
Here ~ = 1.8016 for ~ = 0.15 and ~ = 1.73 for 6 = 0.25. As the Mach number increases, the 
values of ~ decrease from 0.596 (M 0 = 1.5) to 0.563 (M 0 = 5) (n = I0, Sh= 0.0025, 6 =0.15). 
Variations of these parameters have a greater effect on the distributions of the amplitude 
functions of the waves (3.1). 

4. Amplitude Functions of T-G Waves and the Structure of the Longitudinal Branches. 
They were studied in detail for solutions with branch A and the additional branch B. It 
was found that the form of the wave is determined mainly by the value of the azimuthal wave 
number n and the radius of curvature R 0 of the trajectories. The effect of the Mac]h number 
and the thickness of the layer is similar to that of the scale factors. Figure 3 displays 
distributions of the amplitude functions of the transverse v, azimuthal w, and longitudinal u 
velocity components for Sh = 0.005, R 0 = 5.5, n = 20, and 61 = 0.15 (lines i) and 62 = 0.25 
(lines 2) for the same intensity of the waves, as well as the values of the average velocities 
U near the outer boundary of the jet and the dimensions 61 and 62 . It is interesting that 
the wave speeds are not high below the inner boundary of the mixing layer. At the same time, 
the upper boundary of the layer (low subsonic speeds) is disturbed quite strongly; ihere both 
longitudinal and rotational velocity components are observed. It is evident that tlhe center 
of the longitudinal vortex for 61 is located at r ~ i.i, while for 62 it can be hypothetically 
found in the near field, in the flooded space. The longitudinal velocity u is an order of 
magnitude higher than v and w. The wave intensity, calculated as s = (<u'2>) I/~, is 17.5%; 
if, however, all three velocity components are considered, then this value decreases to 10%. 

Solutions with the additional branches are also found to be very reasonable. This in- 
vestigation made it possible to find some behavioral characteristics which are characteristic 
of this class of waves. They are summarized in Fig. 4, where the vortex configurations en- 
gendered by the vector field of velocities v' and w' for waves of different scales (different 
n) with R 0 = 25 are shown schematically. This characterization, from all appearances, con- 
tains all variants that can occur in jets. It was found that the vortex configurations ex- 
hibit several stages, which are the same for both families A and B, the solutions from B 
leading somewhat in this dynamics, waves from A. 

For small n (large-scale oscillations) the stage of chaotic disoriented vorticity, when 
a wave still cannot form a vortex (Fig. 4a), is observed first. This stage is characteristic 
for n < 12 from A and for n < 6 from B. As n increases, a vortex forms in the flow and 
strongly disturbs the outer boundary of the layer and the external medium (Fig. 4b)o The 
velocity distribution in such a configuration is displayed in Fig. 3 for 62 = 0.25. Further 
increase of n results in localization of such a solitary vortex in the layer 6. The vortex 
is centered in regions where U ~ 0.01 (Figs. 4c and 3 for 61 = 0.15). In all probability, 
it is for these values of U that R 0 should be determined. Such a stable vortex configuration 
is mainly realized for low values of R 0 for strong centrifugal forces. As n increases further 
(n ~ 22) this primary vortex is displaced into the exterior region 6, and there forms in the 
region of high velocities a second oppositely polarized vortex, so that two vortices (Karman 
vortices) coexist in the mixing region. The intensities of this pair equalize (Fig. 4d, e) 
quite rapidly (n ~ 30 for A). As n increases further, the stable configurations break down 
and small-scale modes (n ~ 50) lead to chaos in the flow, resulting in disoriented vorticity 
(Fig. 4f). 

Figure 4 displays the amplitude functions of the longitudinal wave component u(r), which 
forms distortions of the average profile U(r). The form of the density profile p of the wave 
mainly repeats the form of u, but its maximum value is shifted into the region where the 
layer 6 starts. 

These are the preliminary basic data for harmonic T-G waves. Knowledge of these data 
made it possible to analyze the experimental information kindly provided by the auChors of 
[1, 2]. 

5. Spectral Composition of the Observed Disturbances. As stated in [I, 2], the ex- 
perimental measurements yielded azimuthal traces of the total pressure P0 in different trans- 
verse and longitudinal positions of the first "barrel" of the jet. These traces are repre- 
sented in the form of realizations, where quasiperiodic changes in pressure, forming saw- 
tooth curves, called here variations 6p0 of the total pressure, were recorded against the 
background of average values of P0. The quite complicated form of SP0 is interesting; it is 
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characteristic of natural disturbances, which are always difficult to analyze. The first 
problem was to analyze and retrieve the signal ~P0 on the basis of analytical functions of 
the waves (3.1). For this, the formula 

po/Pst  = [1 + M 2 (• - 1 ) /2 ]  "/('-~), M 2 = U2/a a = U2p/xp 

where all components can be calculated, for variations of the total pressure was derived up 
to quadratic terms from the gas-dynamic relation for the total pressure 

~Po/Po = P ' / P s c  + • 2 i - - U -  Ps--t / (2 + (• - 1) M 2) ( 5 . 1 )  

In addition to an instrumental estimate of the spectral composition, made in [i, 2], 
the distributions 6p0 in different longitudinal positions were Fourier-analyzed numerically 
in order to find both the amplitude and phase relations of the constituents of this compli- 
cated signal so as to retrieve the signal numerically. This information is required in order 
to estimate the gains ~ and therefore to determine whether or not a wave belongs to one or 
another family. 

In view of the fact that the amplitudes of the waves depend strongly on the transverse 
coordinate at quite small transverse distances, it was very important to maintain the refer- 
encing to the chosen reference points. These reference points can be the constancy of the 
average total pressure P0 (tracing of a single streamline) or a point with a characteristic 
value of ~P0 (for example, the maximum value), and finally these must be the closest possible 
longitudinal sections, where R 0 remains constant, and the viscosity and nonlinearity cannot 
significantly affect the wave dynamics. In spite of the abundance of data obtained, only 
several realizations adequately meet these conditions. 

The results of the analysis make it possible to interpret the dynamics and evolution 
of the wave process as follows. A wide spectrum of disturbances (I ~ n ~ 80), having approx- 
imately the same intensity, is excited at the base of the jet. Figure 5 displays the ampli- 
tude and phase spectra 6p0 at x = 0.5, 1.5, and 2 (x = ~/2P0). The existence of quite strong 
waves with small values of n can be explained by the errors introduced by both the weak el- 
lipticity of the nozzle and imperfections in the measurement procedures with circular passage 
around the nozzle as well as by oscillations of the total pressure in the mixing chamber 
during the measurements. 

We now trace the dynamics of oscillations with n > 9. Some predominant modes, cluster- 
ing near n ~ 13, 18, 25, 40, 55, and so on, can be identified among the disturbances, even 
for small values of x. We do not yet have an unequivocal answer concerning their genesis. 
They are equally likely to be a continuation of vortices associated with the inner gas-dy- 
namics of the nozzle itself and with the fact that at such longitudinal distances selective 
intensification of oscillations associated with the roughness of the edges and nonuniformity 
of the flow at the cutoff has already occurred. The question also requires further analysis. 

Farther downstream the evolution is associated with intensification of the modes 9 ~ n 
30 and decay of high-frequency components. The latter componentsdecay successively - modes 
with higher azimuthal numbers decay or are absorbed earlier. We consider in greater detail 
spectra with x = 1.5 and 2, which more than others satisfy conditions for determining the 
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constants ~. The phase spectra show that for 10 ~ n ~ 30 there is no strong nonlinear process 
accompanied by merging and capture; all modes retain their spatial orientation, though the 
exchange processes for them are different. It is possible to identify a group of decaying, 
constant, and growing modes. 

Figure 2 displays (cross marks) the constants ~, extracted from the spectrograms pre- 
sented. Up to n ~ 20 the growth rates are described quite well by the computational relations 
for the branch A of the nonviscous approximation with I0 ~R0< 25. We point out that from the 
reference points of the suspended shock it was found that R 0 N 6, and according to the P0max 
line R 0 ~ 12. For n > 20 processes which are not described by the nonviscous linear approx- 
imation start to influence the dynamics of the real components. Thus one of the predominant 
modes (n = 25) belongs to a group with a = 0; for these longitudinal values of x it falls in 
the range of high-mode decaying components and the computed growth rates ~ for it can be com- 
pared only to the values obtained for spectrograms with x < 1.5. Such a comparison of the 
computed and experimental values of ~ shows that, first, their quite good agreement in the 
region of applicability of nonviscous linear approximation indicates that the model adequately 
describes the physical phenomenon and, second, the real dynamics of T--G waves can be de- 
scribed only by taking into account the viscous and nonlinear effects. 

Let us assume that the other modes for which further calculations were performed also 
belong to this branch of the solutions, 14 spectral modes 4 ~ n ~ 28 with amplitudes iG I > 2 
for M 0 = 1.5, 6 = 0.15 with R 0 = 5.5, 8.5, and i0 were used as the basic modes. For them, 
the amplitude functions were determined according to Eq. (3.2) and the total signal 

14 

~p0 = ~ ~ p o ~  (0  cos ( n ~  - ~,) 
i=1  

was retrieved using Eq. (5.1). 

All obtained variants were found to be quite close in value and similar in form, so 
that we present one of them for ~ = 0.15 and R 0 = 8.5. It is obvious that variation of 
these values should affect the transverse and not the azimuthal distributions of the wave 
characteristics. The retrieved signal 6p0 presented in Fig. 6 repeats quite accurately the 
characteristic features of the initial realization (point 4, Fig. 2 [!]), the periodicity 
in the alternations of maximum and minimum values is preserved, and the location of the maxi- 
mummum values of ~P0 is described correctly. All this provides a basis for the assertion 
that the analytical form of the oscillations in the form of stationary T-G disturbances (3.1) 
is close to reality, and the agreement between the experimental and computational results can 
be improved by obtaining more accurate references with respect to the thicknesses of the 
layer, values of the radius of curvature R0, and other assumptions adopted here. We look 
forward to progress in this field. 

Figure 6 also displays the total functions of the wave velocities for a distinguished 
value of r over the entire circumference of the jet. The value r = 1.02 was chosen at the 
location where the longitudinal component of the velocity assumes its maximum vlaue. As is 
evident, the longitudinal velocity u' repeats the form of 6P0, since it is the value of u' 
that determines the form of 6P0. The dimensions of the oppositely polarized vortices, the 
components of vortex pairs, can be retrieved from the distributions of the velocities v' and 
w'. Their azimuthal extent is indicated in the figure, together with the conventional sign 
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of the vorticity. It is evident that the dimensions of the right- and left-rotating vortices 
in such pairs are different, and their vorticity is different; stagnant regions where there 
are no radial-azimuthal flows are also observed. The rotational components of the totalT-G 
wave are an order of magnitude smaller than the longitudinal component. Of course, it should 
be expected that the characteristic radial component of the average profile V will introduce 
corrections into the computed picture of the vortex configurations. 

Figure 6 displays the azimuthal distributions of the total perturbation density p', which 
correlate completely with the distributions u' The decrease in u' is associated with low- 
head gas flowing into the layer from external regions; this produces a corresponding deforma- 
tion of the average density and corresponds to negative values of p'. Finally, the figure 
also displays the values of the maximum gradients 8p'/Sr. It is well known that the maximum 
values of the optical gradients of the density, which can be directly associated to gradients 
of the real gas density, are recorded in the shadow photographs of jets (Toepler pictures). 
If the alternating peaks are identified with the dark bands in the photographs and the alter- 
nating troughs are associated to the light-colored bands, then the number of bands in the 
photographs and the number of peaks or troughs in the computed data can be counted accurately. 
This can give an additional possibility for calibrating the changes in optical density and 
retrieving the true values of p. 

Figure 7 displays the transverse distributions of the longitudinal velocity and density 
at the phase of the minimum (~ - 180 ~ ) and the phase of the maximum (~ - 202 ~ ) for the total 
wave studied, It is evident that the maximum values of p fall in the range of higher flow 
velocities. Transverse distributions of this type are qualitatively similar to those pre- 
sented in Fig. 3 of [i], though the absence of a line of average total pressure in the latter 
distributions makes it difficult to make an accurate comparison. The maximum intensity of 
the total T-G wave, calculated from the longitudinal velocity, is estimated to be 20%. The 
average profile U can be distorted by 20-40%. 

This theoretical investigation, supplementing and explaining the experimental informa- 
< 

tion, makes it possible to assert reliaSly that a coherent structure, produced by stationary 
Taylor-GSrtler vortex waves, exists in the initial section of a supersonic nonisobaric jet. 

We thank S. A. Gaponov and V. I. Merkulov for their interest in this work and for helpful 
discussions. 
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STATIONARY CURRENTS IN OSCILLATING FLOWS IN TUBES IN THE 

CASE OF QUASISTATIONARY TURBULENCE 

E. I. Permyakov UDC 532.517.4:534.213 

It is well known that stationary flows are generated during the excitation of standing 
waves in resonators [i], substantially affecting heat and mass transfer [2, 3]. In the 
literature one can find a set of specific results in this field of study, but their range 
of application is comparatively narrow. 

We clarify what we have in mind. Consider flows in resonating tubes. In the case of 
oscillating flows the current is characterized by two criteria: one usually uses the Strouhal 
number Sh = 2Rw/u m and oscillation Reynolds number Re c = 2Rum/V (R is the tube 
radius, ~ is the cyclic oscillation frequency, u m is the velocity oscillation 
amplitude, and v is the kinematic viscosity). In the Rec--Sh plane one can indicate 
three regions: I -- the laminar flow regions (in which are located all results 
available in the literature), II - the region of turbulent flows, in which the nonstationary 
character of turbulence is substantial, and III- the region in which turbulence can be as- 
sumed to be quasistationary (Fig. i). The boundaries of these regions are curves I and 2, 
respectively, for 

Sh = Rec/160 000; (1 )  

Sh = 0,158/Re~ ~s (2)  

The boundary (i) was obtained as a result of generalizing the experimental and theoretical 
data of [4], and that of (2) is the result of theoretical analysis [5]. The boundary (2) 
corresponds to the condition Z = 4Rm/%Um~< i, where % is the hydraulic resistance coefficient, 
and the dependence %(Rec) in (2) is taken from the Blasius law for smooth-walled tubes [6]. 
Obviously, the broadening of the investigated region of secondary flows requires taking into 
account the possible flow turbulization. 

In the present study we investigate theoretically stationary flows in the case of quasi- 
stationary turbulence, i.e., in region III, which can be extended substantially if the tube 
walls are rough, i.e., if % = const [6]. 

Kazan'. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 56-62, 
September-October, 1993. Original article submitted February 19, 1992; revision submitted 
August 19, 1992. 

0021-8944/93/3405-0647512.50 �9 1994 Plenum Publishing Corporation 647 


